الرياضيات المتناهية الأمثلة

Resolver para R 0=-14000/(1+R)+9000/((1+R)^2)+10000/((1+R)^3)
خطوة 1
أعِد كتابة المعادلة في صورة .
خطوة 2
انقُل السالب أمام الكسر.
خطوة 3
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 3.2
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 3.3
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 3.4
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 3.5
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 3.6
عوامل هي ، والتي تساوي حاصل ضرب في نفسها بمعدل من المرات.
تحدث بمعدل من المرات.
خطوة 3.7
عوامل هي ، والتي تساوي حاصل ضرب في نفسها بمعدل من المرات.
تحدث بمعدل من المرات.
خطوة 3.8
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 4
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
اضرب كل حد في في .
خطوة 4.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 4.2.1.1.2
أخرِج العامل من .
خطوة 4.2.1.1.3
ألغِ العامل المشترك.
خطوة 4.2.1.1.4
أعِد كتابة العبارة.
خطوة 4.2.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.2.1
أخرِج العامل من .
خطوة 4.2.1.2.2
ألغِ العامل المشترك.
خطوة 4.2.1.2.3
أعِد كتابة العبارة.
خطوة 4.2.1.3
طبّق خاصية التوزيع.
خطوة 4.2.1.4
اضرب في .
خطوة 4.2.1.5
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.5.1
ألغِ العامل المشترك.
خطوة 4.2.1.5.2
أعِد كتابة العبارة.
خطوة 4.2.2
أضف و.
خطوة 4.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
اضرب في .
خطوة 5
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1.1
أعِد ترتيب و.
خطوة 5.1.1.2
أخرِج العامل من .
خطوة 5.1.1.3
أخرِج العامل من .
خطوة 5.1.1.4
أخرِج العامل من .
خطوة 5.1.1.5
أخرِج العامل من .
خطوة 5.1.1.6
أخرِج العامل من .
خطوة 5.1.2
أعِد كتابة بالصيغة .
خطوة 5.1.3
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 5.1.3.1
طبّق خاصية التوزيع.
خطوة 5.1.3.2
طبّق خاصية التوزيع.
خطوة 5.1.3.3
طبّق خاصية التوزيع.
خطوة 5.1.4
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.4.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.4.1.1
اضرب في .
خطوة 5.1.4.1.2
اضرب في .
خطوة 5.1.4.1.3
اضرب في .
خطوة 5.1.4.1.4
اضرب في .
خطوة 5.1.4.2
أضف و.
خطوة 5.1.5
طبّق خاصية التوزيع.
خطوة 5.1.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.6.1
اضرب في .
خطوة 5.1.6.2
اضرب في .
خطوة 5.1.7
اطرح من .
خطوة 5.1.8
اطرح من .
خطوة 5.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
اقسِم كل حد في على .
خطوة 5.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1.1
ألغِ العامل المشترك.
خطوة 5.2.2.1.2
اقسِم على .
خطوة 5.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.3.1
اقسِم على .
خطوة 5.3
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 5.4
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 5.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.1.1
ارفع إلى القوة .
خطوة 5.5.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 5.5.1.2.1
اضرب في .
خطوة 5.5.1.2.2
اضرب في .
خطوة 5.5.1.3
أضف و.
خطوة 5.5.2
اضرب في .
خطوة 5.6
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 6
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: